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Abstract
Facilitated diffusion is a fundamental search process used to describe the
problem of a searcher protein finding a specific target site over a very large DNA
strand. In recent years macromolecular crowding has been recognized to affect
this search process. In this paper, we bridge between two different modelling
methodologies of facilitated diffusion: the physics-oriented kinetic approach,
which yields the reaction rate of the search process, and the probability-oriented
stochastic approach, which yields the probability distribution of the search
duration. We translate the former approach to the latter, ascertaining that the
two approaches yield coinciding results, both with and without macromolecular
crowding. We further show that the stochastic approach markedly generalizes
the kinetic approach by accommodating a vast array of search mechanisms,
including mechanisms having no reaction rates, and thus being beyond the
realm of the kinetic approach.

PACS numbers: 02.50Ey, 05.40Fb, 05.40Jc

1. Introduction

DNA binding proteins face the daunting task of pinpointing a specific binding site out of a very
large number of DNA sequences. This biological process is of great importance and poses an
interesting search problem. The simplest description of this problem is a three-dimensional
diffusion-controlled bi-molecular reaction rate, formulated by the reaction

S + T
ka�
kd

ST , (1)
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where S represents the searcher protein, T represents the DNA target site, ka is the association
rate and kd is the dissociation rate. Experiments have demonstrated that DNA binding proteins
find their target sites a couple of orders faster than a three-dimensional diffusion-controlled
process [1–3]. On the other hand, first-passage-time reasoning implies that a search performed
by one-dimensional diffusion along a DNA strand consisting of n base pairs (the search initiated
from a random location on the strand) will take O(n2) time steps [4]—which is also too long a
time scale. Hence, neither a three-dimensional diffusion-controlled process in the cytoplasm
nor one-dimensional diffusion along the DNA can yield, on their own, the fast search times
observed experimentally.

The discrepancy between the biological search and the search efficiency of diffusive
processes is an important theoretical challenge. To resolve this problem various search
algorithms based on intermittent search processes have been proposed [5, 6]. One such
process considers the search to take place in two alternating phases: (i) relocation—a three-
dimensional diffusion-controlled motion in the cytoplasm and (ii) scanning—landing on a
non-specific DNA binding site and thereafter performing a one-dimensional motion along the
DNA. If the specific target is found during a scanning phase then a binding reaction takes
place and the search process comes to an end. If not, the protein dissociates and relocates in
three-dimensional diffusion again. The time during which the protein stays associated with
the DNA, t1D , is exponentially distributed. The dissociation rate is defined as λ1D = 1/〈t1D〉.
This two-phase search process, termed facilitated diffusion in the seminal paper by Berg et al
[3], is formulated by the reaction

S + D + T
k1�
k−1

SD + T
k2�
k−2

ST + D, (2)

where S and T are the same as in equation (1), D represents the DNA strand, and k1, k−1, k2

and k−2 are the appropriate reaction rates. The facilitated diffusion search process is illustrated
in figure 1.

In this paper, we discuss two approaches modelling the facilitated diffusion search process.
The first is the conventional physical kinetic approach [3, 7], whereas the second is the more
recent probabilistic stochastic approach presented in [8, 9]. We will show that the latter
approach generalizes the former, extending the kinetic results to different facilitated diffusion
mechanisms (including anomalous mechanisms) and yielding probability distributions of the
search durations (rather than rates and means)—thus providing a more general and robust
model of DNA search processes.

In recent years it has been realized that macromolecular crowding in the cell may well
affect the search process. The conventional kinetic approach has been adjusted to take the
crowding effect into account. We show how the stochastic approach can also take the crowding
effect into account, incorporating it more flexibly and robustly than the kinetic approach.

The remainder of this paper is organized as follows. The kinetic approach, in both the
non-crowded and crowded cases, is described in sections 2 and 3. The stochastic approach is
described in section 4. In section 5, we show that the two approaches are in agreement, and in
section 6 we explain how the stochastic approach generalizes the kinetic approach.

2. The kinetic approach

The diffusion-controlled reaction rate k between two diffusive reactants in a medium is given
by the Debye–Smoluchowski equation:

k = (4πκNA) · D3 · L, (3)

2



J. Phys. A: Math. Theor. 42 (2009) 434012 Y Meroz et al

Figure 1. A schematic illustration of the facilitated diffusion search process. A searcher protein S
(depicted by a circle) seeks a specific target site T over a long DNA strand (in blue). The searcher
initiates with a three-dimensional diffusion-controlled motion in the cytoplasm, associates with
the DNA, and performs a scanning phase moving along the DNA (represented by an arrow). The
searcher then dissociates into the cytoplasm, relocates and performs a second scanning phase. In
the third scanning phase the searcher finds the target, and the search process comes to an end.

(This figure is in colour only in the electronic version)

where κ is a unit-less factor which takes into account possible interactions such as steric or
electrostatic, NA is the Avogadro number, D3 is the diffusion coefficient of the reactants and L
is the interaction radius.

The kinetic approach approximates the facilitated diffusion process by considering the
searcher protein and the target site as two diffusive reactants. The reaction rate k̃ of the
approximated facilitated diffusion process is given by the following modification of the Debye–
Smoluchowski equation [3, 7]:

k̃ = C · D̃3 · L̃, (4)

(the constant C in equation (4) is the counterpart of the constant (4πκNA) in equation (3)).
D̃3 is the effective diffusion coefficient of the facilitated diffusion process, and it accounts for
the relocation phase. L̃ is the effective interaction radius of the facilitated diffusion process,
and it accounts for the scanning phase.

In the relocation phase, the three-dimensional diffusion is effectively slowed down by
the constant association and dissociation of the protein searcher to the DNA. The diffusion
coefficient is therefore normalized according to the concentration of nonspecific DNA sites
cns, and the binding constant between the protein and nonspecific DNA sites KRD, producing
the effective diffusion coefficient

D̃3 ≈ D3

1 + KRDcns

. (5)
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The average number of DNA base pairs covered by the searcher during the association
time t1D is equal, on average, to twice the square root of the scanning motion’s mean square
displacement (MSD): 2〈

√
r2(〈t1D〉)〉. This is also the effective interaction radius since if the

target site is situated within such a distance from the searcher’s initial association site then the
searcher will, on average, reach it during its scanning phase. Hence, considering a Brownian
motion scanning mechanism with the diffusion coefficient D1, the effective interaction radius
is given by

L̃ = l + 2
√

D1〈t1D〉, (6)

where l is the size of one base pair. Finally, substituting equations (5) and (6) into
equation (4) yields the reaction rate k̃ of the facilitated diffusion process.

3. Macromolecular crowding

The effects of macromolecular crowding on the search process, caused by proteins already
bound to the DNA, have been incorporated into the conventional kinetic approach [7]. These
bound proteins crowd the DNA, making it less accessible for the searcher protein to bind to
and thus impeding protein association to the DNA. Setting v to be the DNA vacancy, i.e. the
fraction of DNA free of bound proteins, the fraction of accessible DNA to a searcher protein
is given by fv = v e1− 1

v [10, 11], and the effective diffusion coefficient now takes the form [7]

D̃3 ≈ D3

1 + KRDcnsfv

. (7)

The bound proteins also obstruct the one-dimensional scanning of the searcher protein
along the DNA, and are thus termed roadblocks [7]. This hindering of the searcher protein
leads to a smaller effective interaction radius [7]:

L̃ ≈ l + 2

√
D1〈t1D〉

1 + (〈t1D〉/tx)1/2
, (8)

where tx = 1/πD1ρ
2
v is the diffusion time across the average gap between roadblocks and

ρv = (1 − v)/dv denotes the density of roadblocks (d being the size of the search protein
and roadblocks) [10, 11]. In the limit 〈t1D〉/tx � 1 the searcher protein is not affected by the
roadblocks (since it dissociates before coming into contact with them), and the non-crowded
result of equation (6) is recovered. On the other hand, in the limit 〈t1D〉/tx � 1 the searcher
protein is affected by the roadblocks. This case of one-dimensional motion along the DNA
where no mutual exchanges of the diffusants are allowed (i.e. the order of the diffusants is
kept) is termed single file diffusion (SFD). Taking this limit and substituting tx = 1/πD1ρ

2
v

into equation (8) one can recognize the scanning motion’s MSD corresponding to SFD
[12, 13]:

L̃ ≈ l +
√

2

√
2

ρv

(
D1

π

)1/4

〈t1D〉1/4. (9)

It should be noted that when roadblocks are not taken into consideration then v = 1,
yielding fv = 1 and ρv = 0. In this case, equations (7), (8) reduce, respectively, to
equations (5), (6) of the non-crowded case.

4. The stochastic approach

Eliazar et al [8, 9] introduced a stochastic model of the DNA search problem on circular DNA
strands (plasmids), enabling the calculation of the distributions of search times (rather than

4
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their means and rates), and expanding the range of possible mechanisms of both the relocation
and scanning phases. The approach is probabilistic, retaining the facilitated diffusion setting
without resorting to reaction-rate equations.

It was shown [8, 9] that the effect of the scanning mechanism on the performance of
the search process can be represented by a function �(λ1D) termed the scan function (for
further details see the appendix). Linear scanning with constant velocity v results in the scan
function �(λ1D) = v〈t1D〉 = v/λ1D . Brownian motion scanning, with a diffusion coefficient
D1, results in the scan function

�(λ1D) =
√

2D1〈t1D〉 =
√

2D1

λ1D

. (10)

Another important scanning mechanism is fractional Brownian motion (fBm), a generalization
of Brownian motion introduced by Mandelbrot and Van-Ness [14], and the quintessential
example of a continuous random motion with correlated fluctuations. fBm is governed by a
Hurst exponent H (0 < H < 1) which quantifies the statistical self-similarity of its sample-
path trajectories [15]. In the Hurst range 0 < H < 1/2 fBm has negatively correlated
fluctuations, its dynamics are anti-persistent, its memory is short-ranged and its propagation
is subdiffusive. In the Hurst range 1/2 < H < 1 fBm has positively correlated fluctuations,
its dynamics are persistent, its memory is long-ranged and its propagation is superdiffusive.
The Hurst exponent H = 1/2 retrieves Brownian motion. fBm scanning motion, with Hurst
exponent H, results in the scan function

�(λ1D) = cH 〈t1D〉H = cH

(λ1D)H
(11)

(cH is a positive constant depending on the Hurst exponent H).
We note that the three aforementioned scanning mechanisms resulted in power-law scan

functions. We further note that power-law scan functions coincide, up to a multiplicative
constant, with the root of the MSD of the corresponding scanning motions: �(λ1D) ≈√

〈r2(〈t1D〉)〉 =
√

〈r2(1/λ1D)〉.
The DNA coverage rate λcov, i.e. the rate at which the searcher protein covers the DNA,

is defined as the ratio of the average amount of DNA covered per search cycle and the average
duration of a search cycle (the search cycle being a three-dimensional cytoplasm relocation
phase, followed by a one-dimensional DNA scanning phase). In the case of power-law scan
functions the average amount of scanned DNA per search cycle is l + �(λ1D). The average
duration of a search cycle is 〈t3D〉 + 〈t1D〉, where t3D denotes the relocation time (i.e. the
random time spent during the relocation phase of the searcher protein, from DNA dissociation
till the subsequent DNA reassociation). Hence, the DNA coverage rate is given by

λcov ≡ l + �(λ1D)

〈t3D〉 + 1/λ1D

. (12)

The facilitated diffusion process is a sequence of independent search cycles which may be
viewed as a series of Bernoulli trials, where success is defined as the searcher protein finding
the target site. The number of trials till first success is thus geometrically distributed. This
observation, in turn, implies that the overall search time, tfind, is asymptotically exponentially
distributed:

P(tfind > t) ≈ exp (−λcov · t). (13)

A further generalization is the introduction of m searcher proteins, operating independently
and simultaneously, which improves the DNA coverage rate λcov by the factor m, namely

P(tfind > t) ≈ exp(−mλcov · t). (14)

5
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5. The stochastic approach recovers the kinetic results

In this section, we show that the stochastic approach recovers the results of the kinetic
approach in both the conventional non-crowded case [3] and the crowded case [7]. To this end
we compare the rate constant k̃a of the kinetic approach to the coverage rate λcov = 1/ 〈tfind〉 of
the stochastic approach. Both these quantities admit a multiplicative representation composed
of two factors—one describing the relocation phase and the other describing the scanning
phase. We compare these two factors respectively.

Consider the relocation phase. One can reach the kinetic relocation term from the
relocation term defined in the stochastic approach, expressed by the reciprocal of the
average cycle time 〈t3D〉 + 〈t1D〉. From the kinetic viewpoint the expression for the mean
relocation time is given by [3, 7]: 〈t3D〉 = 1/λ1DKRDcnsfv . Using this expression one gets
〈t3D〉 + 〈t1D〉 = 〈t3D〉(1 + cnsKRDfv). Also, defining ξ as the average distance between the
nearest DNA segments, one can make a rough estimate that 〈ξ 2〉 = D3〈t3D〉. Combining these
expressions we obtain

1

〈t3D〉 + 〈t1D〉 ≈ D3

1 + cnsKRDfv

= D̃3, (15)

successfully recovering the kinetic result (both with and without crowding) from the stochastic
approach.

Consider now the scanning phase. In the case of no crowding, the coincidence of the
scanning phase terms is immediate: substituting the Brownian scan function of equation (10)
into the stochastic-approach term l +�(λ1D) yields the kinetic-approach result of equation (6).
In the crowded case, one has to choose an appropriate stochastic-approach scan function in
order to meet the corresponding SFD behaviour described by equation (8). It has been shown
[16] that SFD is suitably described by fBm with H = 1/4. Hence, the corresponding MSD
takes the form [12, 13] 〈r2(t1D)〉 = 2

√
D1t1D/πρ2

v . This MSD yields the scan function

�(λ1D) =
√

2

ρv

(
D1

π

1

λ1D

)1/4

. (16)

Finally, substituting the scan function of equation (16) into the stochastic-approach term
l + �(λ1D) yields the kinetic-approach result of equation (9).

6. The stochastic approach generalizes the kinetic approach

In this section we show how the stochastic approach generalizes the kinetic approach, yielding
a range of further analyses and directions. We focus on two key issues: anomalous halting of
the scanning mechanism, and anomalous relocation mechanisms.

Consider the incorporation of a halting mechanism affecting the scanning phase. The
halting occurs randomly in time according to a given rate. Once halted, the scanning motion
freezes for a random duration thalt, and thereafter resumes its motion. Such halting can stem
from a distribution of energetic traps. Anomalous halting corresponds to the case of infinite-
mean halting durations 〈thalt〉 = ∞, diverging due to heavy-tailed probability laws of the form
P(thalt > t) ≈ 1/tβ with exponent 0 < β < 1. Anomalous halting is one possible theoretical
model explaining the biologically prevalent subdiffusive molecular transport [17].

fBm scanning motion with Hurst exponent H, combined with anomalous halting with
exponent β, results in the scan function [8, 9]:

�(λ1D) = cH(
λ1D + bλ

β

1D

)H
(17)

6
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(b is a positive constant depending on the halting mechanism). Note that this scan function
captures all the aforementioned kinetic results: equation (8) is obtained by setting H = 1/2
(Brownian motion scanning), β = 1/2 (halting with the Lévy–Smirnov exponent) and
b = √

1/tx ; equations (6) and (9) are obtained by setting H = 1/2 (Brownian motion
scanning) and H = 1/4 (fBm scanning representing SFD), respectively, and b = 0 (no
halting).

An important feature of the stochastic approach is its modularity, i.e. that one can easily
change the Hurst exponent H and the halting exponent β (in equation (17)) to fit different
diffusion and anomalous diffusion models. Moreover, fBm is just one special class of the much
broader class of self-similar stochastic motions [15]. The stochastic approach accommodates
scanning mechanisms performed by general self-similar motions: both equations (11) and
(17) hold valid for any self-similar scanning motion with continuous sample-path trajectories.
This fact, combined with a recent work on the universal generation of statistical self-similarity
[18], allows for the incorporation of a large class of highly non-Brownian scanning processes.

Let us now turn to discuss the case of infinite-mean relocation times, which lies beyond
the realm of the kinetic approach. This case has been observed experimentally [17] and is
therefore of great importance. The kinetic approach is restricted to regular diffusion whereas
the stochastic approach is not. Indeed, the stochastic model allows for very general scanning
and relocation mechanisms, including various anomalous diffusion motions (both in one and
three dimensions). An important application is the case of anomalous relocation mechanisms
yielding heavy-tailed relocation times [19]: namely, infinite-mean relocation times 〈t3D〉 = ∞,
diverging due to heavy-tailed probability laws of the form P(t3D > t) ≈ 1/tα with exponent
0 < α < 1. In this case the counterpart of equation (14 ) is

P(tfind > t) ∼
(

l + �(λ1D)

α
· tα

)−m

. (18)

The asymptotically exponential search duration of equation (14) is replaced by the
asymptotically Pareto search time of equation (18). Note the marked differences between
these two cases: in the infinite-mean case the overall search time tfind is non-exponential
and thus has no rate. We emphasize that the notion of rate, the very foundation of the
kinetic approach, is meaningless when dealing with infinite-mean relocation times. Moreover,
in equation (14) the number of searchers m affects only the exponential rate, whereas in
equation (18) the number of searchers m determines the order of finite moments that the
search duration tfind possesses. Specifically (in the infinite-mean case), as the number of
searchers m increases, the overall search time tfind gains more and more converging moments.

We conclude this section with a discussion emphasizing the central role of the relocation
mechanism. To this end, consider the DNA strand to consist of n � 1 base pairs. In [8, 9] it
was shown that, in the case of finite-mean relocation times 〈t3D〉 < ∞, the mean search time
〈tfind〉 is of order O(n). This result is general, and holds for arbitrary scanning mechanisms.
On the other hand, if the search process is performed by the scanning motion alone (with no
relocation) then [8, 9]: (i) self-similar scanning motions with Hurst exponent H yield mean
search times 〈tfind〉 of order O(n1/H ) (e.g. O(n2) in the case of Brownian motion scanning, and
O(n4) in the case of SFD scanning); (ii) the incorporation of anomalous halting yields infinite-
mean search times 〈tfind〉 = ∞ (for whatever scanning motion applied). These observations
pinpoint the effect of relocation: in the first case the relocation mechanism is most beneficial
since it reduces the mean search times 〈tfind〉 from the higher order O(n1/H ) to the lower order
O(n); in the second case the relocation mechanism is essential for it reduces the infinite-mean
search times 〈tfind〉 = ∞ to the finite order O(n). For an analogous analysis regarding the
case of infinite-mean relocation times 〈t3D〉 = ∞, the readers are referred to [8, 9].

7
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7. Conclusions

In this paper, we compared two approaches modelling the biological facilitated diffusion
search process—the physically-oriented kinetic approach, and the probabilistically-oriented
stochastic approach. We ascertained that the results obtained by the stochastic approach indeed
confirm and coincide with the well-established kinetic approach results, both with and without
DNA macromolecular crowding. Having expressed the parameters of the stochastic approach
in terms of the parameters of the kinetic approach, we generalized the kinetic reaction-rate
results to the more informative stochastic probability-distribution results. Moreover, the
stochastic approach allows for the accommodation of very general relocation and scanning
mechanisms, including anomalous ones, which lay beyond the realm of the kinetic approach.
This was exemplified by the important case of infinite-mean relocation times, where the kinetic
notion of reaction rates is no longer valid and the overall search times are Paretian.

Bridging between the kinetic approach and the stochastic approach, this paper enables
researchers to translate from a physical to a probabilistic nomenclature. This, in turn, provides
wide access to the stochastic modelling of the DNA search problem, and to the advantages
this approach offers: modularity, generality and robustness.
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Appendix. The scan function appearing in the stochastic approach

Consider a search process initiating from a random location along a circular DNA strand
consisting of n base pairs. Let (i) Sn denote the random time it takes a searcher protein to find
the target site using scanning alone (i.e. no relocation involved); (ii) Tn denote the random
time it takes a searcher protein to find the target site using the two-phase facilitated diffusion
process; (iii) t3D denote the relocation time, i.e. the random time spent during the relocation
phase of the searcher protein, from DNA dissociation till the subsequent DNA reassociation.
Assuming that each relocation phase lands the searcher protein randomly along the DNA
strand, the stochastic approach establishes a closed-form formula expressing the Laplace
transform of the facilitated diffusion search time Tn as a function of Laplace transforms of the
relocation time t3D and the scanning time Sn.

In the case of long DNA strands, an asymptotic analysis of the limit n → ∞ is
required. Let Ŝn(θ) (θ � 0) denote the Laplace transform of the scanning time Sn, and
let the stochastic limit tfind = limn→∞ Tn denote the overall search time. Analysis shows
[8, 9] that the stochastic limit tfind exists if and only if the following condition holds: the limit
�(θ) := limn→∞ nŜn(θ +εn) exists for all positive θ and for all non-negative valued sequences
{εn}∞n=1 decaying to zero. The limit �(θ), termed the scan function, captures the effect of the
scanning mechanism on the performance of the facilitated diffusion search process. In other
words, the scan function �(θ) codes all the information regarding the scanning mechanism
which is relevant to the computation of the overall search time tfind.
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